An R package for combining MCMC results from subset posteriors:
A Bayesian joint model for a longitudinal and time-to-event outcome:
Bayesian methods for circular data analysis:
Beltran, R.S., Kendall-Bar, J.M., Pirotta, E. Adachi, T., Naito, Y., Takahashi, A., Cremers, J., Robinson, P.W., Crocker, D.E. & Costa, D.P. (2021). Lightscapes of fear: how mesopredators balance starvation and predation in the open ocean. Science Advances, 7(12) [Full-text]
Cremers, J., Pennings, H.J.M., Mainhard, M.T. & Klugkist, I. (2021) Circular Modelling of Circumplex Measurements for Interpersonal Behavior. Assessment, 28(2), 585-600. [Full-text]
Cremers, J., Pennings, H.J.M & Ley, C. (2020) Regression Models for Cylindrical Data in Psychology. Multivariate Behavioral Analysis, 55(6), 910-925. [Full-text]
van der Lans, R.M, Cremers, J., Klugkist, I. & Zwart, R. (2020) How you say what you say: Teachers’ interpersonal relations and their instructional quality. Studies in Educational Evaluation, 66 [Full-text]
Cremers, J. & Klugkist, I. (2018) One direction? A tutorial for circular data with examples in cognitive psychology. Frontiers in Psychology: Cognitive Science.[Full-text]
Cremers, J., Mainhard, M.T. & Klugkist, I. (2018). Assessing a Bayesian Embedding Approach to Circular Regression Models. Methodology, 14, 69-81. [Full-text]
Cremers, J. , Mulder, K.T. & Klugkist, I. (2018). Circular Interpretation of Regression Coefficients. British Journal of Mathematical and Statistical Psychology, 71(1), 75-95. [Full-text]
Klugkist, I., Cremers, J. & Mulder, K.T. (2018). Bayesian analysis of circular data in social and behavioral sciences. In Ley, C & Verdebout, T. Applied Directional Statistics: Modern Methods and Case Studies (pp. 156 - 199). Chapman & Hall.